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FOREWORD

The Technology Assessment and Research Branch of the
Minerals Management Service (MMS), United States Department of
the Interior, is engaged in a program of research and development
to provide information on the performance of offshore systems. As
part of this program, the MMS is sponsoring the project "Assess~
ment of Uncertainties and Risks Associaﬁed with the Dynamic
Behavior of Compliant Structures" under contract with the
National Bureau of Standards (NBS).

Among these uncertainties are those related to the effects
of current and waves on structural response. The purpose of this
report is to develop probébilistic descriptors for the response
of offshore platforms subjected to such effects. In all cases
the study is conducted by using Monte Carlo simulations of the
response on the one hand, and statistical linearizationm techni-
ques on the other. For structures with higher natural frequen-
cies, additional procedures for estimating the response are used
as follows., If dynamic effects are negligible (i.e., if the
structure responds quasi-statically to the wave excitation), an
exact procedure for developing probabilistic descriptors of the
response from the probabilistic description of the waves is used,
in which it is assumed that the Morison equation holds. If
dynamic effects are significant, a time-discretization method is
used, which is based on the interpretation of the response as a

summation of linear responses due to elemental impulses, and on
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the simplified assumption that the forcing functioh can be de-
scribed by the Morison equation as applied to a fixed cylinder.
To highlight the effect of waves and of the nonlinearities in-
herent in the damping term of the Morisom equation, the report
does not include in the calculations the effects of the wind
loads on structural response, and assumes a value of the drag
coefficient in the Morison equation which, for structures of the
Tension Leg Platform Type,is relatively large (C = 1.0). The
comparisons presented in the report show that th: mean peak
response and the mean upcroésing rates corresponding to various
response levels calculated by statistical linearization techni~
ques are, under these conditions, generally smaller than the
response obtained by simulation (or by the procedures proposed in
the report). The conclusions of the report thus suggest that
statistical linearization techniques should not be applied un-
critically, and that the extent to which they are acceptable

should be verified carefully for each design situation.

Emil Simiu

Structures Division

Center for Building Technology
National Bureau of Standards



DISCLAIMER

The statements and conclusions contained in this report are those
of the contractor and do not necessarily reflect the view of the
U.8. Government and, in particular, the National Bureau of
Standards or the Department of the Interior. Neither NBS or the
contractors make any warranty, express or implied, or assume any
legal liability or responsibility for the accuracy, completeness
or usefulness of any information, apparatus, product or process
disclosed or represent that its use would not infringe privately
owned rights. They accept no respomnsibility for any damage that
may result from the use of any information contained herein. The
mentioning of manufacturers, professional firms, names, products,
and the publication of performance data do not constitute any
evaluation or endorsement by the U.S. Government, its agencies,
or the contractor. It is done in a generic semse to illustrate

particular points.



ABSTRACT

Probabilistic descriptors are developed for the response of
structures of the Tension Leg Platform type to current and waves. .
These are obtained by Monte Carlo techniques by assuming the
validity of the Morison equation. The results are compared to
thosé §btained by using statistical linearization techmniques.
Also, for offshore platforms with higher natural periods of
vibration, mean upcrossing rates for various levels of the struc-
tural response are estimated by simulation, by statistical lin-
earization techniques, and by additional procedures developed in
the report. It is concluded that statistical linearizatiom tech-
niques can underestimate significantly the structural response

induced by current and waves.
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RESPONSE OF COMPLIANT OFFSHORE PLATFORMS TO WAVES

By Mircea Grigoriu and Bunu Alibe

INTRODUCTION

Wave forces are generally modeled by the Morison equation and involve
two components, the drag force and the inertia force (7,8). These forces
depend on wave particle velocity, wave particle acceleration, and structural
motion. The dependence on structural motion can beksignificant for struc—
tures with large periods of vibration, such as Tension Leg Platforms. The
period of vibration of these offshore platforms is of the order of 100 sec.

This study develops probabilistic descriptors for the response of plat—
forms of the Tension Leg type. First, the statistical linearization method is
evaluated based on a simplified single degree of freedom mechanical model
considered previously for the surge motion of compliant platforms (14).
Then, the surge and pitch response of a realistic Tension Leg Platform are
studied. The analysis accounts in this case for the spatial correlation of

wave forces.

SURGE MOTION

Let R(t) be the surge response of a hypothetical platform consisting of

2
a cylindrical member with diameter d and area A = 14—-. Following Ref. 15,

4
it is assumed that R(t) satisfies the differential equation
. . ve A » oo
R(t) + 2¢wo R(t) + wg R(t) = 22 f(t) + Cxp (U¥(t) - R(t)) +
c.pd . . (L)
+ % —,I:,— (UX(t) - R(t)) 1U¥(t) - R(t)!

in which m, ¢, and @, = the mass, the damping ratio, and the natural fre-

quency of vibration of the platform. Since the nonlinearity in the restoring



force has relatively small effects on response (13), the restoring force is
considered to be proportional with R(t). Second order effects and convective
acceleration terms in the wave force are not included in the analysis. The
wave forces are modeled by the Morison equation and depend on the drag
and inertia coefficients, p and S structural response, and wave character—
stics. The wave particle velocity process

U¥(t) = ue + U(L) (2)
is a stationary Gaussian process with mean (current) u, and wvariance rbz.

The one-sided power spectral density of U(t) is
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because, according to the linear wave theory, GU can be obtained at free
water surface by multiplying the ordinates of sea elevation spectrum with
w2, This spectrum coincides with the Pierson-Moskowitz spectrum in the
range [0,8] and depends on the constants ¢, = 0.78 m2/sec*; ¢, = 6.85x10°3
m*/sec®, and the wind speed v measured in m/sec. (8,9,10). The cutoff
frequency & is usually assumed to be 3wp, in which wp = the frequency at
which the spectrum takes on its maximum value (6). Note that the process
U(t) can be differentiated indefinitely when @ < », On the other hand, U(t)
is not differentiable when @ is unbounded or, equivalently, GU in Eq. 3
coincides with Pierson-Moskowitz spectrum. The power spectral density of
U(t) at any water depth can be determined from the spectrum in Eq. 3 scaled
by a depth attenuation factor (10). The wave force in Eq. 1 is the resultant
of the water pressures acting on the platform.

The analysis is based on two methods: statistical linearization and



simulation. It is shown that the statistical linearization method can under-
estimate significantly the peak response of compliant platforms. This limi-
tation of the statistical linearization method is primarily caused by the
implicit assumption in this method that the response follows a Gaussian
distribution. |
Similar limitations of the statistical linearization method are presented in

Appendix A for stiffer offshore structures with periods smaller than 16
seconds. Such structures respond either dynamically or quasi-statically to
wave forces. The report and the Appendix can be read independently.

Statistical Linearization Method

The method has been applied extensively to analyze complex dynamic
systems, particularly for the estimation of the second-moment descriptors of
the response, e.g., the mean and variance (11,14). Recently, the method was
employed to find the mean and variance of the response of offshore struc-
tures to wave forces characterized by the motion dependent form of the
Morison model in Eq. 1 (14).

The statistical linearization method is based on the assumption that the
solution R(t) of Eq. 1 can be approximated by the solution RL{t) of the linear

differential equation

R(t) + 2 ¢¥ wo¥ B (1) + aoX R (t) = W(t) (4)

in which ¢¥ = an effective damping ratio accounting for nonlinearities in Eq.
1, @wo* = a modified natural frequency depending on w,, structural mass m,
and the added mass G PA in which c1 = Gy -1, and W¥(t) = the effective
wave load process. Since W*(t) is a linear function of U(t), the approximate
response R L(t.) is a Gaussian process. However, the distribution of R(t) can

differ from the Gaussian distribution (4,5). The approximating linear



differential equation of motion can be obtained by minimizing an expected
error (11,14).

Simulation Method

Figure 1 shows a discrete approximation of the power spectral density
in Eq. 3. According to this approximation, U(t) has‘power at N frequencies
vwhich can be measured by the variances ¢j2. The process can be repre-
sented by

N
U(t) = I (Aj cos wit + Bj sin wjt) (5)
i=1
in which A{ and Bj are zero-mean, mutually independent Gaussian variables
(2,11). The variance of A; and Bj is ¢j%. From Eq. 5, the wave particle
acceleration has the expression
. N
U(t) = I wj (- Aj sin wjt + Bi cos wjt) (6)
i=1

The simulation method involves three phases. PFirst, realizations of U(t)
and U(t) are generated over any storm duration T from Eqs. 5 and 6 and samples
of {A4, Bj}, i = 1, ..., N. These realizations provide samples of the wave force
process in Eq. 1. Second, deterministic dynamic analyses are performed to
determine the response in (0,7) to these samples. The analyses involve
time-domain integrations and determinations of the peak response in T, the
rate of exceedings (upcrossings) of specified (strength) thresholds, and other
response descriptors for every sample of the wave force process. Third, the
sample response descriptors are used to calculate means and variances of the

response, the average peak response in 7, and mean upcrossing rates.

Numerical Results

Means, variances, and mean rates at which the response exceeds speci-

fied thresholds (mean upcrossing rates) are determined by statistical



linearization and simulation for the model in Eq. 1. These descriptors can be
calculated simply for linearized stationary responses because the approximate
responses follow Gaussian distributions. For example, the mean upcrossing

rate of level r of RL(t) is. (3)

Q-

r-m, 2
vL(r)=%—;o—iex;> - 3 (=D 1 (7)

in which mp and o = the mean and the standard deviation of RL(t) and ¢

the standard deviation of EL(t).

L:

Table 1 gives structural characteristics and wave parameters considered
in analysis. Table 2 provides response descriptors obtained by statistical
linearization and simulation. The simulation analysis involves, e.g., N = 2048
equally spaced frequencies (Eqs. 5 and 6) over the range (0,4.7) rad/sec for
a wind speed v = 30 m/s and is based on 100 samples with length of approxi-
mately one hour. The integration of Eq. 1 uses a time step A = 0.67 sec.

From Table 2, the statistical linearization method provides satisfactory
approximations only for the méan response. Both the standard deviation and
the mean upcrossing rate function are underestimated significantly. Figure 2
shows the variation with a of averages of the peak response obtained by sim-
lation and statistical linearization for various wind speeds and a storm dura-
tion of approximately one hour. From this figure and Table 2, the statistical
linearization method generally underestimates the mean peak response. Note
also that mean peak responses predicted by this mef.hod increase slowly with
the current ratio «. The unsatisfactory performance of the statistical lin-
earization method is caused primarily by the relatively rapid increase of the
effective damping ratio ¢¥ in Eq. 4 with «, the implicit assumption that the
response is a Gaussian process, and the inaccurate representation of the

excitation particularly in the low frequency range. In this frequency range,



the power spectral density of the effective load force W¥(t) in Eq. 4 is nearly

zero. However, the actual forces have power in the low frequency range.

SURGE AND PITCH MOTION

Consider the Tension Leg Platform in Fig. 3(a) with mechanical and
geometrical characteristics in Table 3. The platform has four 15 m diameter
columns connected by horizontal beams (pontoons) of diameter 7.5 m. It is
subjected to spatially correlated wave forces acting in the x direction and
oscillates in the (x,z)-plane. For dynamic analysis, the platform is idealized
as a rigid body with two degrees of fregdom: the surge and the pitch, as
shown in Fig. 3(b). Let Rx(t) and Re(t) be the structural displacement in the
x direction and the rotation about the mass center, i.e., the surge and the
pitch motions.

The response vector R(t) = {Rx(t), Re(t)} satisfies the differential

equation

m B(t) + ¢ R(t) + k R(t) = W(t) (8)

il

in which the components Wx(t) and We(t) of the wave force vector W(t) are
the resultant in the x-direction and the moment about the structural mass
center of the elementary wave forces acting at all points of the platform.
These elementary forces have the same functional form as in Eq. 1. The mass

and stiffness matrices, m and k, are

[m 0 ["4.03x10 kg 0
m = - .
K I K 8.45x10° kg-m?
_ _ (9)
kyx kxe 33.78 kN/m 1.28x10° kN
k = =
| kox Koo 1.28x10° kN 1.53x10%* kNm



in which m = the total structural mass, I = the mass moment of inertia about
an axis perpendicular to the (x,z) plane at the mass center, and kxyx, kxeo,
kox, and kege = the stiffness associated with the surge and pitch. These
stiffnesses can be determined from characteristics of the platform in Table 3.
The analysis is based on simulation and involvés the same steps as in
the solution of Eq. 1. However, in this case, both the numerical integration
of the equation of motion and the generation of wave force samples are less
simple. The numerical integration is based on modal decomposition and the
assumption that E(t) can be approximated at any t by its value at the previ-
ous time step (1), The damping structural characteristics correspond to 5%
of the modal critical damping ratios. The generation of wave force samples
accounts for the spatial correlation between waves acting at various struc—
tural points. This correlation results from the spatial pattern of the wave
particle velocity process, which can be characterized by the cross-spectrum
of this process. The one-sided cross~spectrum between the velocities Up(t)
and Ug(t) in the x-direction at points p and q of coordinates (xp,2p) and

(xq12q) is assumed to be (12)
Gpqlw) = «* GU(w) A (w0 zp, 2q) exp [~ JSir (xp - xq)] (10)

in which GU is defined in Eq. 3, r = the wave number which can‘be deter-
mined according to the deep water aproximation as the ratio between the
square of the frequency and the constant of gravity g, h = the ocean depth,
z = the elevation from the sea floor, and

cosh (r zp) cosh (rzq)

A (@5 zp, zq) = (11)

sinh’ {rh)
Consider P structural points and let U(t) be the vector of wave particle
velocities {Up(t)}, p=1, 2 .., P, at these points. If the spectra Gpq in Eq.

9 are discretized and their power is concentrated at N frequencies {wj},



i=1, 2, .., N, U{t) can be represented by the sum of harmonics

u(t) = IEq (Aj cos wjt + By siﬁ wit) (12)
i=1 '

in which Aj and Bj are zero-mean independent Gaussian vectors for any i and
j. The covariance matrices of these vectors are E[A; A{T] = E[(B; B;T] =
(rpglty Pr @ =1, 2 ., P,and i = 1, 2, .., N, where 7pql = Gpq(wi) Aej and Awj
= the frequency interval associated with «j. Equation 12 can be applied dir-
ectly to generate spatially correlated wave particle velocity processes from
realizations of the Gaussian vectors A; and Bj. The use of Fast Fourier
Transform algorithms increases significantly the efficiency of the procedure.

Table 4 gives means, standard deviations, and averages of the peak
response in storms of duration v * 0.7 hours for several wind speeds and
current ratios a« = uo/aU. Note that th)e pitch response has minor effects on
the tension in the platform legs. For example, the variation in the initial
tension in tethers is less than 1% for the average peak pitch response
corresponding to v = 45 m/s and « = 1.0. Additional runs based on the
single degree of freedom model in Eq. 1 showed that the surge response can
be estimated independently of the pitch motion. The analysis assumes the
cross spectrum in Eq. 10 and a linear variation of the current from zero at
the ocean floor to u, at the free water level. The wave force vector W(t) is
determined approximately by concentrating the wave forces at 3 points along

each column of the platform.

CONCLUSIONS
Probabilistic descriptors were developed for the surge and pitch
responses of Tension Leg Platforms to random wave forces. The platforms

were assumed to behave linearly and the wave forces were characterized by



a motion dependent form of the Morison equation. The analysis was based on
statistical linearization and simulation and has accounted for the spatial cor-
relation of the wave force process.

It was found that the statistical linearization method provides inaccurate
estimates of the response which are generally on the unconservative side.
The use of the method in the analysis of Tension Leg Platforms can result in
unsafe designs. The proposed simulation method is efficient and can account

for the spatial pattern of waves.

REFERENCES

1. Anagnostopoulos, S. A., "Dynamic Response of Offshore Platforms to
Extreme Waves Including Fluid-Structure Interaction," Engineering
Structures, Vol. 4, July, 1982, pp. 179-185,

2. Borman, L. E., "Ocean Wave Simulation for Engineering Design,” Journal of
Waterways and Harbors Division, ASCE, Vol. 95, No. WW4, November, 1969,
pp. 557-583.

3. Cramer, H., and Leadbetter, M. R., Stationary and Related Stochastic
Processes, John Wiley & Sons, New York, 1967.

4, Grigoriu, M., and Alibe, B., "Practical Approximations of Peak Wave
Forces," Research Report NBS-GCR-84-481, National Bureau of Standards,
November 1984.

5. Grigoriu, M., "Extremes of Wave Forces,” Journal of Engineering Mechanics
Division, ASCE, Vol. 110, No. 12, December 1984, pp. 1731-1742.

6. Hallam, M. G., Heaf, N. J., and Wootton, L. R.,, Dynamics of Marine
Structures: Methods of Calculating the Dynamic Response of Fixed
Structures Subject to Wave and Current Action, CIRIA Under Water
Engineering Group, Report UR8, London, October, 1978.

7. Moe, G., "Long-Term Wave-Force Statistics for a Vertical Pile,”" Coastal
Engineering, Vol. 2, 1979, pp. 297-311.

8. Morison, J. R., O’Brien, M. P., Johnson, J. W., and Schaff, S. A., "The
Force Exterted by Surface Waves on Piles,"” Petroleum Transactions,
American Institute of Mining Engineers, Vol. 189, 1950, pp. 149-154.

9. Pierson, W. J., and Moskowitz, L., "A Proposed Spectrum Form for Fully
Developed Wind Seas Based on the Similarity Theory of S. A.
Kitaigorodskii,” Journal of Geophysical Research, Vol. 69, No. 24,
December, 1964, pp. 5181-5190.




10.

11.

12,

13.

14.

15.

Sarpakaya, T., and Isaacson, M., Mechanics of Wave Forces on Offshore
Structures, Van Nostrand Reinhold Company, New York, 1981.

Shinozuka, M., "Monte Carlo Solution of Structural Dynamics,"” Computers
and Structures, Vol. 2, 1972, pp. 855-873.

Sigbjorusson, R., and Morch, M., "Spectral Analysis of Nonlinear Wave
Load Effects on Offshore Platforms," Engineering Structures, Vol. 4,
January, 1982, pp. 29-36.

Simiu, E., and Leigh, S. D., "Turbulent Wind Effects on Tension Leg
Platform Surge," NBS Building Science Series 151, U.S. Department of
Commerce, March 1983.

Soong, T. T., Random Differential Equations in Science and Engineering,
Academic Press, New York, 1973.

Spanos, P.-T. D., and Chen, T. W., "Random Response to Flow-Induced
Forces," Journal of Engineering Mechanics, ASCE, Vol. 107, No. 6, Dec.
1981, pp. 1173-1190.

10



Table 1. Structure and Wave Parameters

Parameters Values
m 8.575x10¢ kg
¢ 5%
o 0.06 rad/sec.
d 18m
P 1000 kg/m®

1.0

ccg 2.0

11
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Table 3. Mechanical and Geometrical Characteristics
of the Tension Leg Platforms in Fig. 3

Parameter

Value

Column Diameter
Pontoon Diameter
Deck Mass, m
Water Depth, h
Tension in Tethers
Tethers Length

15 m
7.5 m
40x105 kg
450 m
14,000 kN
415 m

13
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Figure 1. Discrete Approximation of Mean
Power Spectral Density.
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ABSTRACT

Probability density functions, mean crossing rates, and other descriptors
are developed for the quasi-static and dynamic reponses of offshore platforms
to wave forces. It is assumed that offshore platforms can be modeled by sim-
ple oscillators, the wave particle velocity is a stationary differentiable
Gaussian process, the Morison's equation can be applied, and wave forces are
perfectly correlated spatially. Results show that both the quasi-static
response and the dynamic response of offshore platforms to wave forces are
generally underestimated if the drag force is linearized. Estimates are
developed for probabilistic characteristics of these respoﬁses based on the
crossing theory of random processes and time~discretization of the wave force

process. Simulation studies indicate that these estimates are satisfactory.

KEY WORDS

Crossing Theory, Morison's equation, Offshore Structures, Probability

Theory, Random Processes, Wave Forces






RESPONSE OF OFFSHORE STRUCTURES TO RANDOM WAVES

* %%
By Mircea Grigoriu , M.ASCE, and Bunu Alibe

INTRODUCTION

Wave forces are generally modeled by the Morison's equation and involve
two components, the drag force and the inertia force (18,20). The response of
offshore structures to wave forces can be quasi-static or dynamic depending on
the mechanical characteristics of these structures and the frequency content
of the waves. The quasi-static response of linear structures is particularly
simple to determine because it is approximately proportional to the excita-
tion. Thus, probabilistic characteristics of this response can be obtained
directly from those of the wave force (5,6,7). On the other hand, the depen-
dence of dynamic responses on excitation is less simple. Statistical lineari-
zation or other approximations (10,22,23) and simulation studies (3,21) are
generally employed to analyze dynamic responses.

This paper &evelops analytical methods for the determination of the mean
(failure) rate at which the response exceeds structural strength and other
response descriptors for both quasi-static and dynamic oscillations of
offshore structures subject to waves. The mean failure rate is determined
exactly for quasi-static responses and approximately for dynamic responses.
Simulation is employed to evaluate the statistical linearization method and
other approximations. It is assumed that the offshore structures can be
modeled by simple linear oscillators. The Morison's equation is applied to

represent wave forces.

WAVE FORCES

Let

Assoc. Professor of Civil Engineering, Cornell University, Ithaca, NY 14853
*
Grad. Student of Civil Engineering, Cornell University, Ithaca, NY 14853
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UN(e) = u, + U(t) (1)

0

be the wave particle velocity, in which the current uy is deterministic and
the fluctuating component U(t) follows a stationary Gaussian process with zero

mean and one-sided mean power spectral density

—— @exXp (- ] R 0<w S_G

w3 vt (2)
GU(w) = -

0 ’ w > w

This spectrum coincides with the Pierson-Moskowitz spectrum (20) in the range

[0, ] and depends on the constants c, = 8.4 f£2/sect; ¢, = 8.0x105 fr*/sec®

1 2
and the wind speed v measured in ft/s. The cutoff frequency w is usually lar-
ger than 3 wp’ in which wp = the frequency at which the‘spectrum takes on its
maximum value (16). The process U(t) can be differentiated indefinitely when
w < ®, Denote by o, s and i the standard deviatioms of U(t), ﬁ(t) =
dU(t)/dt, and U(t) = dZU(t)/dt2 in this case. On the other hand, U(t) is not
differentiable when & is unbounded or, equivalently, GU(w) in Eq. 2 coincides
with the Pierson-Moskowitz spectrum.

Figure 1 shows the spectrum in Eq. 2 for several values of the wind
speed v. The power of U(t) increases with the wind speed v but changes its
distribution along the frequency axis. For example, the peak of GU(w) is at
approximately 0.7 rad/s for v = 50 ft/s and 0.3 rad/s for v = 100 ft/s. 1In
addition to the Pierson-Moskowitz spectrum, other spectra have been proposed
for the wave particle velocity process, e.g., the JONSWAP spectrum which was
developed for conditions prevalent in the North Sea (20).

Wave forces are modeled in this paper by various forms of the Morison's

equation which disregard or account for flow-structure interaction. In all

cases, wave loadings consist of the superposition of two components, drag
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forces and inertia forces. Drag forces depend nonlinéarly on U*(t) while
inertia forces are linearly related to ﬁ*(t). Note that inertia forces are
defined only when the wave particle velocity is a differentiable process or
w < @ in Eq. 2.

The non—interactive Morison equation for fixed cylindrical members is
X(t) = a; X + a, X,(t) (3
in which a, Xl(t) = the drag force, a, Xz(t) = the inertia force,

x,(£) = U"(e) |U*(t>|

(4)
ok °
Xz(t) = U (t) = U(e)
and
_ 1

a; = E-Cd pd
(5)

a2 = Cm P T

The parameters 3, and a, depend on the diameter of the cylindrical member d,

the flow density p, and the drag and inertia coefficients ¢, and Cn® The

d
coefficients take on values in the ranges (0.6, 1.0) and (1.5, 2.0), respec-
tively (1).

The interactive forms of the Morison equation involve time derivatives of

the structural displacement process R(t). For example, according to the

relative velocity model, the wave force is (14,20).



A-4

T(e) = a; (U(6)-R(o)) 07k +a, [%0) - (1 - 1) reed] (o)
C
m

On the other hand, the wave force predicted by the independent field model has

the form (17)

Z(t) = X(t) - a, R(c) RO - o, (1 -i-) R(t) )
m
The models in Eqs. 6 and 7 have been developed for the analysis of flex-
ible structures, such as tension leg platforms. For these structural systems,
the flow-structure interaction is a major source of additional damping. Pre-
vious studies (2,9) show that Eq. 3 can be applied even to the analysis of
flexible offshore platforms, provided that the structural damping is increased
to account for effects of flow-structure interaction. This additional damping
is referred to aé hfdrodynamic damping and can be estimated from comparisons> ¢
of offshore platform responses to the interactive and noninteractive wave

forces in Eqs. 3, 6, and 7.

QUASI-STATIC RESPONSE

Consider a simple oscillator with natural frequency much larger than the
frequencies of the excitation. The oscillator response is practically propor-
tional to the excitation and is referred to as quasi-static response.

This section examines the quasi-static response of offshore structures to

the non-interactive form of the Morison equation. From Eq. 3,

1
R(t) = = [a1 X, (t) + a, xz(t)] , (8)



A-5

in which k = the structural stiffness. The distribution of the peak response

during any period T can be approximated by (8,26).
F (r) = exp (- V(r) 1) (9)

in which v(r) is the mean rate at which R(t) crosses from below (upcrosses) a

strength level r. V(r) can be obtained from the mean (outcrossing) rate at

which the vector process £(t) = {El(t), Ez(t)}T leaves the bivariate safe

domain D = {(El, 52): El + EZ < &}, in which

g,(t) = X,(¢) = (uo + U(t)) |u0 + u(z)'
£,(t) = a X,(t) = a () = a O(e) (10)
& = kr/a

a= az/a1

The mean outcrossing rate of £(t) relative to D is (24)

() = [ a5 E [ (6) + / E(e) = E] £() (11)
L

in which f = the first order denmsity of §(t) and

E[E()+/ &) =¢8]=] & £(§ /¢g)ak (12)

is the expectation of the positive tail of the projection of Eﬂt) on the

exterior normal n = [#:, l—] to the limit state L = {(El, 52) : 51 + 52 = &}
/2 V2

given that £(t) = £ on L. The conditional density f(énﬂg) in Eq. 12 can be
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obtained by differentiating the conditional probability F(én/é) =
P (6,(t) <& /& () =&, £ (t) = & - § ] with respect to § . This proba-

bility depends on the processes El(t) and Ez(t) in Eq. 10 and their derivatives

£.(e) = 2 [ug + (L) U(t)
(13)
ézcc) = a U(t)
because
¢ (0) = éz (8¢ + E,(0) (14)
2

From Eqs. 10, 13, and 14,

(u0+U(c))|uO+u<c)| = £

(2|u0+U(t)'6(t)+a u(t)

n— —

/2

< & )
U(t) = (£ - §)/a

(15)

Elementary calculations show that the first condition implies that U, + U(t)

= /lill and the conditional variable U(t) / U(t) = u follows a Gaussian dis-

“tribution with mean - (Gﬁz / OUz)u and variance GUZ - 664 / GUZ. As a result,

FE /e =0 —2 ) (16)

and



o ( = ) (17)

in which,

nmeem——— d

(18)

and ¢ and ¢ denote the distribution and the density of the standard Gaussian

variable. From Eq. 12,

B[ (&) +/ &(t) =gl = [c o () +be (2] (19)
V2a ¢ o c

The mean crossing rate of £(t) out of the safe domain D is, from Egs.

11 and 19,

o0

vWr) == [ [co () +be (2)] £1(5)) £5(6 - §)) dg; (20)

|

—C0 [ Cc

in which the first order densities fi of Si(t) are (12,13)

(21)

1
fl(gl) = —————— eXp {—E

w556 VT - g 2
— I}
3



and

1
£2(5p) = =~ ¢

£
2 ) (22)
aO’ﬁ

Elementary transformations of Eq. 20 give

in which,

\) -]
v(r) = -—g— /
B -0

(88/1 - (8/8)2

1 2 E* -5 n(w)w2 2
dw exp {- 3-[(w -+ f? )] *

(23)

$(d) + [2 sgn(w) w (E* - sgn(u)uz) - Bz(a-w)]¢(-d)}

4 = 2 sgn(ww (E* - sgn(w)wz) - Bz(d-w)

88/1 -(8/8)?

" = E/cU2

g= (" -8)y
6 = E[£,(e)] /
£ = var[£ (0]
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The parameters € and CZ denote scaled values of the mean and variance of the
drag process El(t) and can be obtained in closed form from the density in Eq.
21 (12,13).

As previously mentioned, the mean outcrossing rate in Eq. 20 coincides
with the mean upcrossing rate of level r = ali/k of the response process R(t)
in Eq. 8. This mean upcrossing rate depends on the joint density of R(t) and
ﬁ(t) and can be obtained from this density and Rice's formula (8,19). The mean
outcrossing rate has also been approximated from the "point-crossing formula”.
According to this formula, the mean upcrossing rate of a sum of two processes,

such as the drag and inertia processes in Eq. 8, can be approximated by

(12,13,15)
VRS n) = [ V(8 - £)) £5(8,) A8, + [ V(8 - &) £,(6)dE,  (25)

in which vi(u), i = 1,2, denotes the mean upcrossing rate of level u of
Ei(t). The mean outcrossing rate V has also been approximated from linear-—

ized representations of the response, e.g., for u

b > 0,

2, 205 (D)) + a, B(e)] (26)

1
R(6) == [a; (u
k
Note that the mean upcrossing rate of the linearized response, vL, can be
obtained simply because RL(t) is a Gaussian process (12,13).

Figure 2 shows with solid and dotted lines ratios of the mean crossing

.c./vL for the power spectral density in Eq. 2 with wp = 0.8

rates \)/VL and v P
rad/sec., @ = 3wp = 2.4 rad/sec., wind speed v = 50 ft/sec., and zero,
intermediate, and large current (a = 0.0, 0.5, and 1.0). The parameter 8 (Eq.
23) is related to the relative importance of inertia and drag forces. Large

values of B correspond to inertia dominated wave forces while small values of

this parameter are typical to drag dominated wave forces. For the wave forces
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in this figure B = 1.09 d. The ratios of mean crossing rates show that the
linear approximation can underestimate significantly the peak response.
Note ﬁhat the point crossing formula constitutes a satisfactory approximation
of v. The standardized threshold in this figure is measured in standard devi-
ation units from the mean and is based on exact values of the mean and the
standard deviation of the response.

Figure 3 shows standardized dimensionless averages of the peak response
during storms of various durations T for a wind>speed of 70 ft/sec and zero
current. These averages are based on Eqs. 9 and 23 and an approximation of

the largest distribution of the response in Ref; 24, From this reference,

n
T

F.(r) = [F(r)] (27)

in which F = the distribution of individual response peaks and n = the aver-
T

age number of such peaks in T. F(r) can be obtained from the fraction of
individual peaks which do not exceed r. Note that the approximations shown in

this figure are in good agreement.

DYNAMIC RESPONSE
Consider a simple oscillator with mass m, damping c, and stiffness k
subject to the wave force process W(t) = X(t) or Y(t) in Eq. 3 or 6. The

displacement of the oscillator, R(t), satisfies the differential equation

m R(t) + cR(t) + k R(t) = W(t) (28)

and is generally a non—Gaussian random process which has stationary character~-

istics during the steady-state period of oscillations. Denote by Wy = Yk/m

and § = ¢/(2m wO) the natural frequency and the damping ratio of the
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oscillator. It is assumed in the analysis that ¢ = 5%.

This section develops probabilistic characteristics of the steady-state
response R(t) "exactly” by simulation and approximately by statistical linear-
zation and time-discretization of the wave force process. The approximate
results are evaluated by simulation.

Simulation Method

Figure 4 shows a discrete approximation of the power spectral density in
Eq. 2. According to this approximation, U(t) has power at N frequencies w

which can be measured by the variances Oi. The process can be represented by

N

u(t) = 121 [Ai cos W t + Bi sin mitJ (29)

in which Ai and Bi are zero—mean, mutually independent Gaussian variables
(3,21). The variance of Ai and Bi is 05. From Eq. 29, the wave particle
[ 4

acceleration has the expression

N
u(t) = z wi [- Ai sin wit + Bi cos mit) (30)
i=1

The simulation method involves three phases. First, realizations of U(t)
and ﬁ(t) are generated for storm of any duration T from Eqs. 29 and 30 and
samples of {Ai’ Bi}, i=l, «.., No These realizations and Eqs. 3, 6, or 7
provide samples of the wave force process. Second, deterministic dynamic
analyses are performed to determine the response in (0,T) to these samples.
The analyses involve time—domain integratibns and determinations of the peak

response in T, the rate of upcrossings relative to various thresholds, and

other response descriptors for every sample of the wave force process. Third,
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the sample descriptors are employed to calculate means and variances of the
response, the average peak response in T, and mean upcrossing rates.

Statistical Linearization Method

The method was applied extensively to the solution of complex dynamic
problems, particularly for the estimation of the second-moment descriptors of
the response, e.g., the mean and variance (22,23)., Recently, the method was
employed to find the mean and variance of the response of offshore structures
to wave forces characterized by the interactive form of the Morison's equation
in Eq. 6 (23).

According to the statistical linearization method, the solution of a non-
linear differential equation can be approximated by the solution of a linear
differential equation that can be obtained by minimizing an expected error.
Thus, the response of the structural model in Eq. 28 with W(t) = Y(t) in Eq. 6
can be approximated by the solution of a linear differential equation excited
by linear functions of U*(t). Since these functions are Gaussian_pfocesses,
the response is itself a Gaussian process. However, the actual distribution of
the response can differ significantly from the Gaussian distribution.

‘Figure 5 shows ratios v/vL of exact to approximate mean upcrossing rates
of the response R(t) in Eq. 28 to the interactive wave force Y(t) in Eq. 6 with

= 1.0, d

en = 2.0, ¢ 0.5 ft., and the power spectral density in Eq. 2 for

d

@ = 15 rad/sec. and v

[]

50 ft/sec. The exact and approximate mean upcrossing
rates were obtained by the simulation method in the previous section and by
statistical linearization. The simulation method involves N = 1024 frequencies
and time—domain integrations with a time step At = 0.2 sec. Note that the dif-
ferences between the mean upcrossing rates v and vL increase with the threshold
and can be significant for relatively large values of the threshold. From Eq.
9, the disribution exp (—VLT) of the peak response based on the approximate

mean crossing rate VL is generally inaccurate and its use results in
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unconservative estimates of the average peak response. Thus, the statistical
linearization method should not be applied to estimate the peak response. A
possible use of the method could be in fatigue studies involving exceedings of
relatively low thresholds. For such thresholds, the exact and approximate mean
upcrossing rates do not differ significantly. The lafge errors in statistical
linearization are primarily caused by the implicit assumption in this method
that the response is a Gaussian process. The assumption is particularly
erroneous for large thresholds and small currents due to differences between
the Gaussian distribution and the actual distribution of response.

Time-Discretization Method

Assume that W(t) in Eq. 28 is equal to the wave force X(t) in Eq. 3. Let
{Xk} be a series with time step A and the same marginal distribution as X(t)
which takes on constant and independent values within the holding periods A.

From Eq. 28, the response to X(t) is

t
R(t) = [ h(t-1) X(T) dt (31)
0 .

when the oscillator is at rest at t = O, If X(t) is approximated by the series

{Xk}’ the response and its derivative have the expressions

n
R(t) = ) h X (32)
k=1

and

R(t) =

e~

. hy xk' (33)
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at any t = nd, in which
kA
h, = f h(t-T) drt (34)
(k=1)A
and ﬁk = dhk/dt. For the simple oscillator in Eq. 28,
-Cao(n-k)
hk S {z sin((n—k)al) + /1-c2 cos ((n—k)al] -
w,w
1%0 | (35)
—Ca
-e O [z sin((a-k+1)a ) + /1—;2 cos {(n=k+l)a 11}
and
. 1 -cao(n—k+1) -Za, (n-k)
hk =— |e sin((n-k+l)a1) - e sin((n-k)al)] (36)
w
1

in which wo

From Eqs.

{R(t), R(D)}.

nents

- Je/m, < =

w. A, and a

Ji-r2 -
Yo Y15, %y = 9ph, 1

32 to 36, one can determine moments of the response vector

For example, the covariance matrix of this vector has the compo-—

o2 = o !ZI Py B b
X k, =1 k2 L
2 2 a . 3
0o =0 L e ,h h (37)
X K, %=1 k% "k %
° 2 IZ]'
Cor(R,R) = o© P h
N

if {Xk} were a

2
correlated series with variance o

X and correlation coefficient
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Prg between Xk and Xz. These equations simplify significantly for independent
excitations, as considered here, because pk£ is one for k=% and zero other

wise. In this case (10),

o = 5 02 (38)
X
4:wo
From Eq. 32, the characteristic function of the response is
n
Yales By eees b)) = T WCuby) (39)

in which ¢ = the characteristic function of the random variable X(t). wn can
be inverted by Fast Fourier Transform to determine the density, f, and the
distribution, F, of R(t). The characteristic function ¥ of X(t) is equal to
the product of the characteristic functions wl and wz of the drag force alxl(t)
and inertia force a,X,(t) because.these forces are independent at any time t.

272

These characteristic functions are

1 1 a” - 2as
wl(“) === {— exp erfc ]+
22 /5] 48y 2/s,
(40)
a” = 2as
+ 1 exp erfe (- 2 ]}
/s, 4s, 2/s,
2 2
in which s, = %.[1 + 2vV/-1 ualduz), Sy = %-(l - ZJCI ualduz), erfc (- -1 z) =
z 2
1+ 27 7 et 4, and

Jr O



Wz(u) = exp (—-% a,” o (41)

Two approximations are considered for the mean upcrossing rate of level r

of R(t), v(r). First, it is assumed that R(t) and the translation process

Rp(e) = P (3(a())) (42)

have the same crossing characteristics. The process Z(t) in this equation is a

stationary Gaussian process with zero-mean and unit variance (l1l1). The vari-

ance of i(t) = dz(t)/dt is

0:? = &2 1 (43)
[T 0@ a
- {£[F ! (e(2))]}?
According to this approximation (10),
%%
v(r) = = ¢ (o7 (F(r))) (44)
2m

Second, it is assumed that R(t) is independent of R(t) and follows a Gaussian

distribution (11).. The assumption results in the approximation

v(r) * 2

£(r) (45)
/on

Figure 6 shows “exact” mean upcrossing rates of R(t) and approximations of

these mean rates in Eq. 44 for wave forces with cy = 2.0, ¢, = 1.0, and d = 0.5

d
ft. It was found that the estimates in Eq. 44 improve significantly if the
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time step A of the independent series {Xk} is determined from the condition that
the variance 02 in Eq. 38 matches the actual variance of the response, corres-—
ponding to the continuous wave force process X(t). This variance can be obtained
simply and accurately from Eq. 37 if the time step 4 = A* is small (e.g, a tenth
of the period of the oscillator) and pkl are the corrélation coefficients of lag

%
'k—ZIA of X(t). These correlations are (4)

%*
Peg = By ((=087) 7 BL(0) (46)
in which
BX(T) = af og g(a, o, pU(T)) + a% oﬁz oﬁ(f) -
- 4a§ cg [@ ¢¢a) + (1+a®) (e(a)- L)]2 (47)
2

gla, a, s) = [(l+a2)2 + 4a’s + 2s2][1-4 d(-a) + 4 ¥(a, o, s)]
+ 2-(1-s2)l/2 (az +38) exp (- EE—] +
T l+s
(48)

+ 2(%J1/2 [a(l+a2) + 4 as] exp (- %E] [@(a(l-s)]- %—]
oy and g = the normalized covariance functions of U(t) and ﬁ(t), and ¢(*,*3°)
= the bivarlate normal distribution.

From Fig. 6 developed for‘structures with 5% damping ratios, the time-

discretization method is simple and provides satisfactory approximations for the
mean upcrossing rates of the response. The method was also applied successfully

to the analysis of structures with much larger damping ratios. Such damping

characteristics may be used to model effects of flow~structure interaction
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(2,9). A limitation of the method is that it becomes inefficient computation-

ally when applied to analyze structures with large periods of vibration.

CONCLUSIONS

Mean upcrossing rates and other probabilistic descriptors were developed
for the quasi-static and dynamic response of offshore platforms subject to wave
forces. The descriptors are exact for quasi-static responses and approximate
for dynamic responses.

Results show that the approximate mean crossing rates of the response
obtained by the statistical linearization method are generally inaccurate and
on the unconservative side for both quasi-static and dynamic structural
responses. The use of the method in the dynamic analysis of offshore platforms
can result in unsafe designs. On the other hand, the peak of the dynamic
response of offshore platforms can be approximated satisfactorily by a method
proposed in this paper which involve serial representations of the wave force

process.
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